

‘C’

Programming

Language

 SECTION – 1

 LECTURE : 1-3

 ‘C’ introduction,Tokens

 SECTION – 2

 LECTURE : 4-5

 Control Statements ,Loop

 SECTION – 3

 LECTURE : 6-7

 Array ,String

 SECTION – 4

 LECTURE : 8-9

 Pointers

 SECTION – 5

 LECTURE : 10

 Functions

__

 SECTION – 6

 LECTURE : 11

 Structure, Union

 SECTION – 7

 LECTURE : 12

 File Handling

__

SECTION - 1

‘C’ introduction,Data Type,Operators

What is Language :

• Language is medium of communication.

• If two persons want to communicate with each other , they have to use a common language.

• Like Hindi, English, Punjabi etc.

What is Computer Programming:
• In the same way when a user wants to communicate with a computer ,the language that he/she uses

for this purpose is known as programming language .Ex: C, C++, JAVA ……
• Computer programming is a way of giving computers instructions about what they should do next.

These instructions are known as code, and computer programmers write code to solve problems or

perform a task.

Types of programming Language:

Machine Language:
• It is in 0 and 1 format

• No need to translate.

• Programs are less understandable

• Difficult to write large programs

• Debugging is most difficult.

• Programs are machine dependent

• Not portable: portable to machine of the same architecture only

Assembly Language:
• Uses mnemonic for programming (ADD,STORE)

• Need assembler to translate from assembly to machine language

• Programs are more understandable then machine language and less understandable then High level

language.

• Difficult to write large programs but easy then machine language

• Debugging is easy then machine language and complex then high level language

• Programs are machine dependent

• Not portable: portable to processor of the same architectures only

High Level Language:
• It uses natural language elements, which is easy to use.

• Need translator(compiler or assembler) to translate from high level language to object code

• Easy to understand

• Easy to write large programs and suitable for software development

• Debugging is easier than others

• Programs are not machine dependent

• Programs are portable

Types of Translator:
1. Assembler

2. Complier

3. Interpreter

Assembler:
• Assembly and machine language are low level language

• The assembly codes are easier to write but system can executes the machine code.

• So we need a translator (Assembler) to translate assembly code to machine code.

Compiler:
• Used to translate high level source code to object code.

• Compiler scans all the lines of source program and list out all syntax errors at a time.

• It takes less time to execute.

• Object produced by compiler gets saved in a file. So file do not need to compile again and again

Interpreter:

• Used to translate source code to object code.

• Interpreter scans one line at a time of source program if there is any syntax error , the execution of

program terminates immediately.

• It takes more time to execute.

• Machine code produced by interpreter is not saved in any file . So we need to interpret the file each

time(BASIC is an interpreter based language)

‘C’ Programming Tokens:

1. Keywords

2. Identifiers

3. Variables

4. Constants

5. Operators

6. Special Symbols

1. ‘C’ KEYWORDS:

• Keywords are the words whose meaning has already been explained to the C compiler

• The keywords cannot be used as variable names because if we do so we are trying to assign a

new meaning to the keyword, which is not allowed by the computer.
• There are 32 keywords available in C.

• Rules to be followed for all programs written in C:

o All keywords are in lower case.

o C is case sensitive so int is different from Int.
o The keywords cannot be used as variable names because if we do so we are trying to

assign a new meaning to the keyword, which is not allowed by the computer.

• List of C programming keywords.

2. IDENTIFIERS :

• Identifiers refer to the naming of programming elements like variables, functions and arrays.

• These are user-defined names and consist of sequence of letters and digits, with a letter as a first

character.

• Both uppercase and lowercase letters are permitted, although lowercase letters are commonly

used.

• The underscore character is also permitted in identifiers. It is usually used as a link between two

words in long identifiers.

• Some legal identifier :

arena, s_count

marks40

class_one

• Some illegal identifiers:

o 1stsst

o oh!god

o start….end

• The number of characters in the variable that are recognized differs from compiler to compiler.

• An identifier cannot be the same as a C keyword.

3. VARIABLE :

• Variables are named locations in memory that are used to hold a value that may be modified by

the program.

• Unlike constants that remain unchanged during the execution of a program.

• A variable may take different values at different times during execution.

• The syntax for declaring a variable is –

DataType IdentifierName ;

Example. int num;
 long int sum , a;

4. CONSTANT :

• Constants are named locations in memory that are used to hold a value that cannot be modified

by the program.

• Constants remain unchanged during the execution of a program.

• const keyword is used to declare constant data.
• The syntax for declaring a constant is –

const DataType IdentifierName ;
Example. const float PI = 3.14f;

5. OPERATORS :

• C supports rich set of operators.

• An operator is a symbol that tells the computer to perform certain mathematical or logical

manipulations.

• Operators are used in programs to manipulate data and variables.

• Types of operators

1. Unary operator(+,-,++,--)

2. Binary operator

a. Arithmetic operators (+,-,*,/,%)

b. Relational operators (<,>,<=,>=,==,!=)

c. Logical operators(&&(logical AND),||(logical OR),!(logical Not))

d. Assignment operators (=)

e. Bitwise operators (~,>>,<<,^,&,|)
• C supports bitwise operators for manipulation of data at bit level.
• Bitwise operators may not be applied to float or double.
• Bitwise operators are as follows:

 & bitwise AND

 | bitwise OR

 ^ bitwise exclusive OR

 << shift left

 >> shift right

 ~ One’s Complements
f. Special operators (. ,sizeof(),&,->)

3. Ternary operator

• C supports a ternary operator i.e. conditional operator.
• The conditional operator is defined as

 “ ? : ”
• The conditional operator works in following format:

 Syntax : (condition) ? true statement : false statement ;

 for example:

void main()

{

 int a=11, b=20;

 (a==b) ? printf(“both r Equal”) : printf(“Not Equal”) ;

}

Output: Not Equal

6. SPECIAL OPERATOR :

• ! , @, #, $, & , * , …..

• These all symbols are called Special Symbols.

• Every symbol has its special meaning in different respect at different place that’s why it is

called Special Symbols.

Data Type:

• C language is rich in its data type.

• Data type tells the type of data, that you are going to store in memory.

• It gives the information to compiler that how much memory (No. of bytes) will be stored by the

data.

Type Size Description

char 1byte Used for characters or integer variables.

int 2 or 4 bytes Used for integer values.

float 4 bytes Single precision floating point values

double 8 bytes Double precision floating point values

In addition to these data types, some of them may be used with a modifier that affects
the characteristics of the data object. These modifiers are listed in Table.

Modifier Description

long Forces a type int to be 4 bytes (32 bits) long and forces a type double to be

larger than a double (but the actual size is implementation defined). Cannot

be used with short.

short Forces a type int to be 2 bytes (16 bits) long. Cannot be used with long.

unsigned Causes the compiler (and CPU) to treat the number as containing only

positive values. Because a 16-bit signed integer can hold values between –

32,768 and 32,767, an unsigned integer can hold values between 0 and

65,535. The unsigned modifier can be used with char, long, and short

(integer) types.

Storage Class:

To fully define a variable we need to mention :

1. Type of variable i.e (int, char, float)

2. The storage class of a variable

The storage class is associated with a variable which decide what would be the default value of variable,

where it would get stored, what will be the life of variable, and what will be the scope of variable.

Moreover, a variable’s storage class tells us:

• Where the variable would be stored.

• What will be the initial value of the variable, if initial value is not specifically assigned.(i.e. the

default initial value).

• What is the visibility of the variable; i.e. in which functions the value of the variable would be

available.

• What is the scope or life of the variable; i.e. how long would the variable exist.

Types of Storage class :

1. Automatic storage class

2. Register storage class

3. Static storage class

4. Extern storage class

1. Automatic storage class : (this is default class)

Keyword : auto

Default value : garbage

Storage : memory

Scope of variable : Local to block

Life of variable : till control remains in the block in which it is declared.

Ex: auto int x;

Ex:

 #include<stdio.h> //header file

void main() //main function

{

auto int x=10; //variable declaration and initialization

 {

 auto int x=20;

 printf(“%d”,x); //printf() method to print value of x

 }

 printf(“%d”,x);

}

Output :20 ,10

2. Register storage class :

Keyword : register

Default value : garbage

Storage : registers of CPU

Scope of variable : Local to lock

Life of variable : till control remains in the block in which it is declared.

Ex: register int x;

Ex:

Void main()

{

 register int r;

 for(r=1;r<=10;r++)

 Printf(“%d”,r);

}

Output:1,2,3,4,5,6,7,8,9,10

Note : If any CPU register is not available to store data then ‘c’ compiler automatically convert

the storage class from register to automatic, because number of CPU registers are limited..

3. Static storage class

Keyword : static

Default value : zero

Storage : memory

Scope of variable : local to block

Life of variable : till the program is running, and it persist in various function call

Ex: static int x;

Ex:

void main()

{

 static int x;

 printf(“%d”,x);

 x++;

if(x<=10)

 main();

}

Output:0,1,2,3,4,5,6,7,8,9,10

4. Extern storage class

Keyword : extern

Default value : zero

Storage : memory

Scope of variable : global from point of declaration onwards

Life of variable : till program execution does not come to an end

MCQ

1. Which of the following is not a valid variable name declaration?

a) int __a3;

b) int __3a;

c) int __A3;

d) None of the mentioned Ans- d

2. Which of the following is not a valid variable name declaration?

a) int _a3;

b) int a_3;

c) int 3_a;

d) int _3a Ans- c

3. All keywords in C are in ____________

a) LowerCase letters

b) UpperCase letters

c) CamelCase letters

d) None of the mentioned Ans- a

4. Which of the following is true for variable names in C?

a) They can contain alphanumeric characters as well as special characters

b) It is not an error to declare a variable to be one of the keywords(like goto, static)

c) Variable names cannot start with a digit

d) Variable can be of any length Ans- c

5. Which is valid C expression?

a) int my_num = 100,000;

b) int my_num = 100000;

c) int my num = 1000;

d) int $my_num = 10000; Ans- b

6. int main()

 {

 int main = 3;

 printf("%d", main);

 return 0;

 }

a) It will cause a compile-time error

b) It will cause a run-time error

c) It will run without any error and prints 3

d) It will experience infinite looping Ans- c

7. The format identifier ‘%i’ is also used for _____ data type.

a) char

b) int

c) float

d) double Ans- b

8. What is the size of an int data type?

a) 4 Bytes

b) 8 Bytes

c) Depends on the system/compiler

d) Cannot be determined Ans- c

9. What will be the output of the following C code?

 #include <stdio.h>

 int main()

 {

 float f1 = 0.1;

 if (f1 == 0.1)

 printf("equal\n");

 else

 printf("not equal\n");

}

a) equal

b) not equal

c) output depends on the compiler

d) error Ans- b

 10. What will be the output of the following C code?

 #include <stdio.h>

 int main()

 {

 float x = 'a';

 printf("%f", x);

 return 0;

 }

a) a

b) run time error

c) compile time error

d) 97.000000 Ans- d

11. What is the difference between the following 2 codes?

 //Program 1

 int main()

 {

 int d, a = 1, b = 2;

 d = a++ + ++b;

 printf("%d %d %d", d, a, b);

 }

 //Program 2

 int main()

 {

 int d, a = 1, b = 2;

 d = a++ +++b;

 printf("%d %d %d", d, a, b);

 }

a) No difference as space doesn’t make any difference, values of a, b, d are same in both the case

b) Space does make a difference, values of a, b, d are different

c) Program 1 has syntax error, program 2 is not

d) Program 2 has syntax error, program 1 is not Ans- d

12. What will be the output of the following C code?

 #include <stdio.h>

 int main()

 {

 int a = 1, b = 1, c;

 c = a++ + b;

 printf("%d, %d", a, b);

 }

a) a = 1, b = 1

b) a = 2, b = 1

c) a = 1, b = 2

d) a = 2, b = 2 Ans- b

13. What will be the output of the following C code?

 #include <stdio.h>

 int main()

 {

 int a = 1, b = 1, d = 1;

 printf("%d, %d, %d", ++a + ++a+a++, a++ + ++b, ++d + d++ + a++);

 }

a) 15, 4, 5

b) 9, 6, 9

c) 9, 3, 5

d) Undefined (Compiler Dependent) Ans- d

14. For which of the following, “PI++;” code will fail?

a) #define PI 3.14

b) char *PI = “A”;

c) float PI = 3.14;

d) none of the Mentioned Ans- a

15. What will be the output of the following C code?

 int main()

 {

 int a = 10, b = 10;

 if (a = 5)

 b--;

 printf("%d, %d", a, b--);

 }

a) a = 10, b = 9

b) a = 10, b = 8

c) a = 5, b = 9
d) a = 5, b = 8 Ans- c

16. What will be the output of the following C code?

 #include <stdio.h>

 void main()

 {

 int k = 8;

 int x = 0 == 1 && k++;

 printf("%d%d\n", x, k);

 }

a) 0 9

b) 0 8

c) 1 8

d) 1 9 Ans- b

17. What will be the output of the following C code?

 #include <stdio.h>

 void main()

 {

 char a = 'a';

 int x = (a % 10)++;

 printf("%d\n", x);

 }

a) 6

b) Junk value

c) Compile time error

d) 7 Ans- c

18. What will be the output of the following C code snippet?

 #include <stdio.h>

 void main()

 {

 1 < 2 ? return 1: return 2;

 }

a) returns 1

b) returns 2

c) Varies

d) Compile time error Ans- d

19. What will be the output of the following C code snippet?

 #include <stdio.h>

 void main()

 {

 unsigned int x = -5;

 printf("%d", x);

 }

a) Run time error

b) Aries

c) -5

d) 5 Ans- c

20. What will be the output of the following C code?

 #include <stdio.h>

 int main()

 {

 int x = 2, y = 1;

 x *= x + y;

 printf("%d\n", x);

 return 0;

 }

a) 5

b) 6

c) Undefined behaviour

d) Compile time error Ans- b

21. What will be the output of the following C code?

 #include <stdio.h>

 int main()

 {

 int x = 2, y = 0;

 int z = (y++) ? y == 1 && x : 0;

 printf("%d\n", z);

 return 0;

 }

a) 0

b) 1

c) Undefined behaviour

d) Compile time error Ans- a

22. What will be the output of the following C code?

 #include <stdio.h>

 int main()

 {

 int x = 1;

 int y = x == 1 ? getchar(): 2;

 printf("%d\n", y);

 }

a) Compile time error

b) Whatever character getchar function returns

c) Ascii value of character getchar function returns

d) 2 Ans- c

23. What will be the output of the following C code?

 int main()

 {

 int x = 1;

 short int i = 2;

 float f = 3;

 if (sizeof((x == 2) ? f : i) == sizeof(float))

 printf("float\n");

 else if (sizeof((x == 2) ? f : i) == sizeof(short int))

 printf("short int\n");

 }

a) float

b) short int

c) Undefined behaviour

d) Compile time error Ans- a

24. What will be the output of the following C code?

 int main()

 {

 int a = 2;

 int b = 0;

 int y = (b == 0) ? a :(a > b) ? (b = 1): a;

 printf("%d\n", y);

 }

a) Compile time error

b) 1

c) 2

d) Undefined behaviour Ans- c

25. What will be the output of the following C code?

 int main()

 {

 int y = 1, x = 0;

 int l = (y++, x++) ? y : x;

 printf("%d\n", l);

 }

a) 1

b) 2

c) Compile time error

d) Undefined behaviour Ans- a

Programs:

Q1. WAP to swap the value of two variables without using third variable.

Q2. WAP to take a character value from the keyword and print ascii value of this character.

Q3. WAP to calculate reverse of a given number.(number of 4 digit)

SECTION - 2

Control Statement

• C language has decision making capabilities and supports controlling of statements.

• C supports following control or decision making statements:

 1. IF

 2. Switch

 3. Break

 4. Continue

 5. Goto

Syntax of if else=>

if(Condition)

{

 True statement…1

 True statement…2

 …

}

else

{

 False statement 1

 False statement 1

 …

}

Switch – case statement

• The control statement that allows us to make a decision from the number of choices is called a

switch
• The switch-case control statement is a multi-way decision maker that tests the value of

an expression against a list of integers or character constants.

• When a match is found, the statements associated with that constant are executed.

• a switch-case-default, since these three keywords go together to make up the control statement.

They most often appear as follows:
switch (integer/character choice)
{
case constant 1 :

 do this ;
case constant 2 :
 do this ;

default :
 do this ;

}
Break statement

 We often come across situations where we want to jump out of a loop instantly, without

waiting to get back to the conditional test. The keyword break allows us to do this.
Syntax: For(; ;)

 { --------

 break;

 }

continue Statement

 In some programming situations we want to take the control to the beginning of the

loop, bypassing the statements inside the loop, which have not yet been executed. The

keyword continue allows us to do this. When continue is encountered inside any loop, control

automatically passes to the beginning of the loop.

Syntax: For(; ;)

 { --------

 break;

 }

Goto statement

 • C supports the go to statement to branch unconditionally from one point to another in the

program.

 • It requires a label in order to identify the place where branch is to be made.

 syntax is:

 goto label;

 Statement 1;

 Statement 2;

 label:

Loops

The versatility of the computer lies in its ability to perform a set of instructions repeatedly. This

involves repeating some portion of the program either a specified number of times or until a

particular condition is being satisfied. This repetitive operation is done through a loop control

instruction.

There are three types of loop

3. While

4. For

5. Do…while

Difference between while and do…while

MCQ - Control Statements

1. What will be the output of the following C code?

 #include <stdio.h>

 void main()

 {

 int x = 5;

 if (x < 1)

 printf("hello");

 if (x == 5)

 printf("hi");

 else

 printf("no");

 }

a) hi

b) hello

c) no

d) error Ans- a

2. What will be the output of the following C code?

 int x;

 void main()

 {

 if (x)

 printf("hi");

 else

 printf("how are u");

 }

a) hi

b) how are you

c) compile time error

d) error Ans- b

3. void main()

 {

 int x = 5;

 if (true);

 printf("hello");

 }

a) hello

b) error

c) Nothing will be displayed

d) Compiler dependent Ans- a

 4. void main()

 {

 int x = 0;

 if (x == 0)

 printf("hi");

 else

 printf("how are u");

 printf("hello");

 }

a) hi

b) how are you

c) hello

d) hihello Ans- d

5. void main()

 {

 int x = 5;

 if (x < 1);

 printf("Hello");

 }

a) Nothing

b) Run time error

c) Hello

d) Varies Ans- c

6. What will be the output of the following C code? (Assuming that we have entered the value

1 in the standard input)

 #include <stdio.h>

 void main()

 {

 double ch;

 printf("enter a value between 1 to 2:");

 scanf("%lf", &ch);

 switch (ch)

 {

 case 1:

 printf("1");

 break;

 case 2:

 printf("2");

 break;

 }

 }

a) Compile time error

b) 1

c) 2

d) Varies Ans- a

7. What will be the output of the following C code? (Assuming that we have entered the value

1 in the standard input)

 #include <stdio.h>

 void main()

 {

 char *ch;

 printf("enter a value between 1 to 3:");

 scanf("%s", ch);

 switch (ch)

 {

 case "1":

 printf("1");

 break;

 case "2":

 printf("2");

 break;

 }

 }

a) 1

b) 2

c) Compile time error

d) No Compile time error Ans- c

8. What will be the output of the following C code? (Assuming that we have entered the value

1 in the standard input)

 #include <stdio.h>

 void main()

 {

 int ch;

 printf("enter a value between 1 to 2:");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 printf("1\n");

 default:

 printf("2\n");

 }

 }

a) 1

b) 2

c) 1 2

d) Run time error Ans- c

9. What will be the output of the following C code? (Assuming that we have entered the value

2 in the standard input)

 void main()

 {

 int ch;

 printf("enter a value between 1 to 2:");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 printf("1\n");

 break;

 printf("Hi");

 default:

 printf("2\n");

 }

 }

a) 1

b) Hi 2

c) Run time error

d) 2 Ans- d

10. What will be the output of the following C code? (Assuming that we have entered the value

2 in the standard input)

 void main()

 {

 int ch;

 printf("enter a value between 1 to 2:");

 scanf("%d", &ch);

 switch (ch)

 {

 printf("Hi");

 case 1:

 printf("1\n");

 break;

 default:

 printf("2\n");

 }

 }

a) 1

b) Hi 2

c) Run time error

d. 2 Ans- d

0. Which keyword can be used for coming out of recursion?

a) break

b) return

c) exit

d) both break and return Ans- b

11. What will be the output of the following C code?

 int main()

 {

 int a = 0, i = 0, b;

 for (i = 0;i < 5; i++)

 {

 a++;

 continue;

 }

 }

a) 2

b) 3

c) 4

d) 5 Ans- d

12. int main()

 {

 int a = 0, i = 0, b;

 for (i = 0;i < 5; i++)

 {

 a++;

 if (i == 3)

 break;

 }

 }

a) 1

b) 2

c) 3

d) 4 Ans- d

13. The keyword ‘break’ cannot be simply used within _________

a) do-while

b) if-else

c) for

d) while Ans- b

14. Which keyword is used to come out of a loop only for that iteration?

a) break

b) continue

c) return

d) none of the mentioned Ans- b

15. What will be the output of the following C code?

 void main()

 {

 int i = 0, j = 0;

 for (i = 0;i < 5; i++)

 {

 for (j = 0;j < 4; j++)

 {

 if (i > 1)

 break;

 }

 printf("Hi \n");

 }

 }

a) Hi is printed 5 times

b) Hi is printed 9 times

c) Hi is printed 7 times

d) Hi is printed 4 times Ans- a

16. What will be the output of the following C code?

 void main()

 {

 int i = 0;

 int j = 0;

 for (i = 0;i < 5; i++)

 {

 for (j = 0;j < 4; j++)

 {

 if (i > 1)

 continue;

 printf("Hi \n");

 }

 }

 }

a) Hi is printed 9 times

b) Hi is printed 8 times

c) Hi is printed 7 times

d) Hi is printed 6 times Ans- b

17. What will be the output of the following C code?

 void main()

 {

 int i = 0;

 for (i = 0;i < 5; i++)

 if (i < 4)

 {

 printf("Hello");

 break;

 }

 }

a) Hello is printed 5 times

b) Hello is printed 4 times

c) Hello

d) Hello is printed 3 times Ans- c

18. What will be the output of the following C code?

 void main()

 {

 int i = 0;

 if (i == 0)

 {

 printf("Hello");

 continue;

 }

 }

a) Hello is printed infinite times

b) Hello

c) Varies

d) Compile time error Ans- d

19. What will be the output of the following C code?

 void main()

 {

 int i = 0;

 if (i == 0)

 {

 printf("Hello");

 break;

 }

 }

a) Hello is printed infinite times

b) Hello

c) Varies

d) Compile time error Ans- d

20. What will be the output of the following C code?

 int main()

 {

 int i = 0;

 do

 {

 i++;

 if (i == 2)

 continue;

 printf("In while loop ");

 } while (i < 2);

 printf("%d\n", i);

 }

a) In while loop 2

b) In while loop in while loop 3

c) In while loop 3

d) Infinite loop Ans- a

21. int main()

 {

 int i = 0;

 while (i < 2)

 {

 if (i == 1)

 break;

 i++;

 if (i == 1)

 continue;

 printf("In while loop\n");

 }

 printf("After loop\n");

 }

a)

 In while loop

 After loop

b) After loop

c)

 In while loop

 In while loop

 After loop

d) In while loop Ans- b

22. int main()

 {

 int i = 0;

 char c = 'a';

 while (i < 2)

 {

 i++;

 switch (c)

 {

 case 'a':

 printf("%c ", c);

 break;

 break;

 }

 }

 printf("after loop\n");

 }

a) a after loop

b) a a after loop

c) after loop

d) error Ans- b

23.int main()

 {

 printf("before continue ");

 continue;

 printf("after continue\n");

 }

a) Before continue after continue

b) Before continue

c) After continue

d) Compile time error Ans- d

24.int main()

 {

 printf("%d ", 1);

 goto l1;

 printf("%d ", 2);

 l1:goto l2;

 printf("%d ", 3);

 l2:printf("%d ", 4);

 }

a) 1 4

b) Compilation error

c) 1 2 4

d) 1 3 4 Ans- a

25. int main()

 {

 printf("%d ", 1);

 goto l1;

 printf("%d ", 2);

 }

 void foo()

 {

 l1 :

 printf("3 ", 3);

 }

a) 1 2 3

b) 1 3

c) 1 3 2

d) Compilation error Ans- d

Programs:

Q1.Write a program to find the greatest number among three, and print all numbers in
ascending order.

Q2. WAP to find and display the product of three positive integer values
based on the rule mentioned below:

It should display the product of the three values except when one of the integer

value is 7. In that case, 7 should not be included in the product and the values

to its left also should not be included. If there is only one value to be considered

, display that value itself. If no values can be included in the product, display -1.

Note: Assume that if 7 is one of the positive integer values, then it will occur
only once. Refer the sample I/O given below.

 Sample Input Expected Output

 153>=1, 5, 3 15

 378>=3, 7, 8 8

 743>=7, 4, 3 12

 157>=1, 5, 7 -1

Q3.WAP to generate and display the next date of a given date. Assume
that

• Date is provided as day, month and year as shown in below table.

• The input provided is always valid. Output should be day-month-year.

 Hint: print(day,”-”,month,”-”,year) will display day-month-year

 Sample Input Expected Output

 Day 1 2-9-2015

 Month 9

 Year 2015

Q4.Food-Corner home delivers vegetarian and non-vegetarian combos to its customer
based on order.

A vegetarian combo costs Rs.120 per plate and a non-vegetarian combo costs

Rs.150 per plate. Their non-veg combo is really famous that they get more orders

for their non-vegetarian combo than the vegetarian combo.

Apart from the cost per plate of food, customers are also charged for home delivery

based on the distance in kms from the restaurant to the delivery point. The

delivery charges are as mentioned below:

 Distance in kms Delivery charge in Rs per km

 For first 3kms 0

 For next 3kms 3

 For the remaining 6

Given the type of food, quantity (no. of plates) and the distance in kms from the

restaurant to the delivery point, write a python program to calculate the final bill amount

to be paid by a customer.

The below information must be used to check the validity of the data provided by the

customer:

• Type of food must be ‘V’ for vegetarian and ‘N’ for non-vegetarian.

• Distance in kms must be greater than 0.

• Quantity ordered should be minimum 1.

If any of the input is invalid, the bill amount should be considered as -1.

Q5. WAP to calculate ab (power (a, b)).

Q6. WAP to calculate factors of any given number,and print addition of all these factors.

Q7. Write a general purpose function to convert any given year into its roman equivalent. The

following table shows the roman equivalent of decimal numbers:

DECIMAL ROMAN DECIMAL ROMAN

1 I

5 v

10 x

50 l

100 c

500 d

1000 m

Example:

Roman equivalent of 1988 is mdccccl xxxviii

Roman equivalent of 1525 is mdxxv

Q8. Write a program to generate all combinations of 1,2 and 3 using for loop.

Q9. Write an application that calculates the squares and cubes of the numbers from 0 to 10

and prints the resulting values in table format, as follows

Number Square Cube

0 0 0

1 1 1

2 2 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

SECTION - 3

ARRAYS IN C

So far we have used only the fundamentals data types, namely char, int, float, double and variations of int and
double. Although these types are very useful, they are constrained by the fact that a variable of these types can
store only one value at any given time. Therefore they can be used to handle limited amounts of data. In many
applications, however, we need to handle a large volume of data in terms of reading, processing and printing.
To process such large amounts of data, we need a powerful datatype that would facilitate efficient storing,
accessing and manipulation of data items. C supports a derived data type known as "Array" that can be used for
such applications.
In definition, an array is a fixed-size sequenced collection of elements of the same data type. In its simplest form,
they can be used to represent a list of numbers or a number of names. These lists shares only one name or a
common name. For instance, we can use an array name salary to represent a set of salaries of a group of
employees in an organization. We can refer to the individual salary by writing a number called index number of
subscript in bracket after the array name. For example:
 salary[9]
represents the salary of 10th employee, as indices are started from 0. While the complete set of values is referred
to as an array, individual values are called elements.

These power powerful abilities enables us to develop concise and efficient programs. For example, we can use a
loop construct, with the subscript as the control variable to read entire array, perform calculations and print out
the results.
We will discuss the following types of arrays:
 1. One-Dimensional Arrays
 2. Two-Dimensional Arrays
 3. Multi-Dimensional Arrays

How to declare an array?

dataType arrayName[arraySize];

For example,

float mark[5];

Here, we declared an array, mark, of floating-point type. And its size is 5. Meaning, it can hold 5 floating-point
values.

It's important to note that the size and type of an array cannot be changed once it is declared.

Access Array Elements
You can access elements of an array by indices.
Suppose you declared an array mark as above. The first element is mark[0], the second element is mark[1] and so
on.

Few keynotes:
Arrays have 0 as the first index, not 1. In this example, mark[0] is the first element.
If the size of an array is n, to access the last element, the n-1 index is used. In this example, mark[4]
Suppose the starting address of mark[0] is 2120d. Then, the address of the mark[1] will be 2124d. Similarly, the
address of mark[2] will be 2128d and so on.
This is because the size of a float is 4 bytes.

How to initialize an array
It is possible to initialize an array during declaration. For example,

• int mark[5] = {19, 10, 8, 17, 9};
You can also initialize an array like this.
• int mark[] = {19, 10, 8, 17, 9};
Here, we haven't specified the size. However, the compiler knows its size is 5 as we are initializing it with 5
elements.

Input and Output Array Elements
Here's how you can take input from the user and store it in an array element.

// take input and store it in the 3rd element
 scanf("%d", &mark[2]);

// take input and store it in the ith element

 scanf("%d", &mark[i-1]);

Here's how you can print an individual element of an array.
• // print the first element of the array
• printf("%d", mark[0]);

• // print the third element of the array
• printf("%d", mark[2]);

• // print ith element of the array
• printf("%d", mark[i-1]);

Example: Array Input/Output
• // Program to take 5 values from the user and store them in an array
• // Print the elements stored in the array
• #include <stdio.h>
• int main() {
• int values[5];
•
• printf("Enter 5 integers: ");
•
• // taking input and storing it in an array
• for(int i = 0; i < 5; ++i) {
• scanf("%d", &values[i]);
• }
• printf("Displaying integers: ");
•
• // printing elements of an array
• for(int i = 0; i < 5; ++i) {
• printf("%d\n", values[i]);
• }
• return 0;
• }
Output

Enter 5 integers: 1
-3
34
0
3
Displaying integers: 1
-3
34
0
3

In C programming, you can create an array of arrays. These arrays are known as multidimensional arrays. For
example,
• float x[3][4];
Here, x is a two-dimensional (2d) array. The array can hold 12 elements. You can think the array as a table with 3
rows and each row has 4 columns.

Similarly, you can declare a three-dimensional (3d) array. For example,
• float y[2][4][3];
Here, the array y can hold 24 elements.

Initializing a multidimensional array

Here is how you can initialize two-dimensional and three-dimensional arrays:
// Different ways to initialize two-dimensional array

int c[2][3] = {{1, 3, 0}, {-1, 5, 9}};

int c[][3] = {{1, 3, 0}, {-1, 5, 9}};

int c[2][3] = {1, 3, 0, -1, 5, 9};

You can initialize a three-dimensional array in a similar way like a two-dimensional array. Here's an example,
 int test[2][3][4] = {
 {{3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2}},
 {{13, 4, 56, 3}, {5, 9, 3, 5}, {3, 1, 4, 9}}};

Example: Two-dimensional array to store and print values

• // C program to store temperature of two cities of a week and display it.
• #include <stdio.h>
• const int CITY = 2;
• const int WEEK = 7;
• int main()
• {
• int temperature[CITY][WEEK];
•
• // Using nested loop to store values in a 2d array
• for (int i = 0; i < CITY; ++i)
• {
• for (int j = 0; j < WEEK; ++j)
• {
• printf("City %d, Day %d: ", i + 1, j + 1);
• scanf("%d", &temperature[i][j]);
• }
• }
• printf("\nDisplaying values: \n\n");
•
• // Using nested loop to display vlues of a 2d array
• for (int i = 0; i < CITY; ++i)
• {
• for (int j = 0; j < WEEK; ++j)
• {
• printf("City %d, Day %d = %d\n", i + 1, j + 1, temperature[i][j]);
• }
• }
• return 0; }
•

MCQ – ARRAYS IN C

1) What is an Array in C language.?
A) A group of elements of same data type.
B) An array contains more than one element
C) Array elements are stored in memory in continuous or contiguous locations.
D) All the above. Answer: D

2) Choose a correct statement about C language arrays.
A) An array address is the address of first element of array itself.
B) An array size must be declared if not initialized immediately.
C) Array size is the sum of sizes of all elements of the array.
D) All the above Answer: D

3) What are the Types of Arrays.?
A) int, long, float, double B) struct, enum
C) char D) All the above Answer: D

4) An array Index starts with.?
A) -1 B) 0 C) 1 D) 2 Answer: B

5) Choose a correct statement about C language arrays.
A) An array size can not changed once it is created.
B) Array element value can be changed any number of times
C) To access Nth element of an array students,use students[n-1] as the starting index is 0.
D) All the above Answer: D

6) What is the output of C Program.? int main() { int a[]; a[4] = {1,2,3,4}; printf("%d", a[0]); }
A) 1 B) 2 C) 4 D) Compiler error Answer: D
Explanation: If you do not initialize an array, you must mention ARRAY SIZE.

7) What is the output of C Program.?
int main(){

int a[];
a[4] = {1,2,3,4};
printf("%d", a[0]); }

A) 1,5 B) 2,6 C) 0 0 D) Compiler error Answer: A
Explanation: It is perfectly allowed to skip array size if you are initializing at the same time. a[0] is
first element. int a[] = {1,2,3,4};

8) What is the output of C Program?
int main() {
 char grade[] = {'A','B','C'};
 printf("GRADE=%c, ", *grade);
 printf("GRADE=%d", grade); }
A) GRADE=some address of array, GRADE=A
B) GRADE=A, GRADE=some address of array
C) GRADE=A, GRADE=A
D) Compiler error Answer: B
Explanation: Variable grade = address of first element. *grade is the first element of array i.e grade[0].

9) What is the output of C program?
int main()
{
 char grade[] = {'A','B','C'};
 printf("GRADE=%d, ", *grade);
 printf("GRADE=%d", grade[0]); }
A) A A B) 65 A C) 65 65 D) None of the above
Answer: C
Explanation: *grade == grade[0]. We are printing with %d not with %c. So, ASCII value is printed.

10) What is the output of C program.?

int main()
{
 float marks[3] = {90.5, 92.5, 96.5};
 int a=0;

 while(a<3)
 {
 printf("%.2f,", marks[a]);
 a++;
 } }
A) 90.5 92.5 96.5 B) 90.50 92.50 96.50 C) 0.00 0.00 0.00 D) Compiler error
Answer: B
Explanation: 0.2%f prints only two decimal points. It is allowed to use float values with arrays.

11) What is the output of C Program.?
int main()
{
 int a[3] = {10,12,14};
 a[1]=20;
 int i=0;
 while(i<3)
 {
 printf("%d ", a[i]);
 i++; } }
A) 20 12 14 B) 10 20 14 C) 10 12 20 D) Compiler error
Answer: B
Explanation: a[i] is (i+1) element. So a[1] changes the second element.

12) What is the output of C program?

int main()
{
 int a[3] = {10,12,14};
 int i=0;
 while(i<3)
 {
 printf("%d ", i[a]);
 i++;
 } }
A) 14 12 10 B) 10 10 10 C) 10 12 14 D) None of the above
Answer: C
Explanation: a[k] == k[a]. Use any notation to refer to array elements.

13) What is the output of C Program.?
int main() {
 int a[3] = {20,30,40};
 a[0]++;
 int i=0;
 while(i<3)
 {
 printf("%d ", i[a]);
 i++;
 } }
A) 20 30 40 B) 41 30 20 C) 21 30 40 D) None of the above
Answer: C
Explanation: You can use increment and decrement operators on array variables too.

14) What is the output of C program with arrays?
int main() {
 int a[3] = {20,30,40};
 int b[3];
 b=a;
 printf("%d", b[0]); }
A) 20 B) 30 C) address of 0th element. D) Compiler error
Answer: D
Explanation: You can assign one array variable to other.

15) What is the output of C Program with arrays and pointers.?
int main() {

 int a[3] = {20,30,40};
 int (*p)[3];
 p=&a;
 printf("%d", (*p)[0]); }
A) 20 B) 0 C) address of element 20 D) Compiler error
Answer: A
Explanation: You cannot directly assign one array variable to other. But using an array pointer, you can

point to the another array. (*p) parentheses are very important.

16) What is the output of C program with arrays and pointers?
int main() {
 int a[3] = {20,30,40};
 int *p[3];
 p=&a;
 printf("%d", *p[0]); }
A) 20 B) address of element 20 C) Garbage value D) Compiler error
Answer: D
Explanation: To point to an array, array pointer declaration should be like (*p)[3] with parantheses. It
points to array of 3 elements.

17) What is the output of C program with arrays and pointers?
int main() {
 int a[3] = {20,30,40};
 printf("%d", *(a+1)); }
A) 20 B) 30 C) 40 D) Compiler error
Answer: B
Explanation: *(a+0) == *a == a[0]. So *(a+1) is element at index 1. Index starts with ZERO.

18) What is an array Base Address in C language?

A) Base address is the address of 0th index element.
B) An array b[] base address is &b[0]
C) An array b[] base address can be printed with printf("%d", b);
D) All the above Answer: D

19) What is the output of C Program with arrays and pointers?

void change(int[]);
int main() {
 int a[3] = {20,30,40};
 change(a);
 printf("%d %d", *a, a[0]); }

void change(int a[]) {
 a[0] = 10; }
A) 20 20 B) 10 20 C) 10 10 D) 20 30 Answer: C
Explanation: Notice that function change() is able to change the value of a[0] of main(). It uses Call By
Reference. So changes in called function affected the original values.

20) An entire array is always passed by ___ to a called function.

A) Call by value B) Call by reference
C) Address relocation D) Address restructure Answer: B

Programs:

Q1. WAP to calculate binary of a given decimal number.
Q2. WAP to calculate hexadecimal of a given octal number.
Q3. WAP to remove duplicate elements from the array of 10 size.
Q4. WAP to count occurance of each element from the array of size 10.
Q5. WAR to calculate average of array elements.

Strings in C

Strings in C are actually arrays of characters. Although using pointers in C is an advanced subject, fully explained
later on, we will use pointers to a character array to define simple strings, in the following manner:

char * name = "John Smith";

This method creates a string which we can only use for reading. If we wish to define a string which can be
manipulated, we will need to define it as a local character array:

char name[] = "John Smith";

This notation is different because it allocates an array variable so we can manipulate it. The empty brackets
notation [] tells the compiler to calculate the size of the array automatically. This is in fact the same as allocating
it explicitly, adding one to the length of the string:

char name[] = "John Smith";
/* is the same as */
char name[11] = "John Smith";

The reason that we need to add one, although the string John Smith is exactly 10 characters long, is for the string
termination: a special character (equal to 0) which indicates the end of the string. The end of the string is marked
because the program does not know the length of the string - only the compiler knows it according to the code.

char c[] = "c string";

When the compiler encounters a sequence of characters enclosed in the double quotation marks, it appends a
null character \0 at the end by default.

How to declare a string?
Here's how you can declare strings:

char s[5];

Here, we have declared a string of 5 characters.

How to initialize strings?
• You can initialize strings in a number of ways.
• char c[] = "abcd";
•
• char c[50] = "abcd";
•
• char c[] = {'a', 'b', 'c', 'd', '\0'};
•
• char c[5] = {'a', 'b', 'c', 'd', '\0'};

Let's take another example:
char c[5] = "abcde";

Here, we are trying to assign 6 characters (the last character is '\0') to a char array having 5 characters. This is
bad and you should never do this.

Read String from the user

You can use the scanf() function to read a string.

The scanf() function reads the sequence of characters until it encounters whitespace (space, newline, tab etc.).

Example 1: scanf() to read a string
• #include <stdio.h>
• int main()
• {
• char name[20];
• printf("Enter name: ");
• scanf("%s", name);
• printf("Your name is %s.", name);
• return 0;
• }
Output

Enter name: Dennis Ritchie
Your name is Dennis.

Even though Dennis Ritchie was entered in the above program, only "Ritchie" was stored in the name string. It's
because there was a space after Dennis.

How to read a line of text?
You can use the fgets() function to read a line of string. And, you can use puts() to display the string.

Example 2: fgets() and puts()
• #include <stdio.h>
• int main()
• {
• char name[30];
• printf("Enter name: ");
• fgets(name, sizeof(name), stdin); // read string
• printf("Name: ");
• puts(name); // display string
• return 0;
• }
Output

Enter name: Tom Hanks
Name: Tom Hanks

Here, we have used fgets() function to read a string from the user.
fgets(name, sizeof(name), stdlin); // read string
The sizeof(name) results to 30. Hence, we can take a maximum of 30 characters as input which is the size of
the name string.
To print the string, we have used puts(name);.
Note: The gets() function can also be to take input from the user. However, it is removed from the C standard.

It's because gets() allows you to input any length of characters. Hence, there might be a buffer overflow.

Passing Strings to Functions
Strings can be passed to a function in a similar way as arrays. Learn more about passing arrays to a function.

Example 3: Passing string to a Function
• #include <stdio.h>
• void displayString(char str[]);
•
• int main()
• {
• char str[50];
• printf("Enter string: ");
• fgets(str, sizeof(str), stdin);

https://stackoverflow.com/questions/30033582/what-is-the-symbol-for-whitespace-in-c
https://www.programiz.com/c-programming/c-arrays-functions

• displayString(str); // Passing string to a function.
• return 0;
• }
• void displayString(char str[])
• {
• printf("String Output: ");
• puts(str);
• }

Strings and Pointers
Similar like arrays, string names are "decayed" to pointers. Hence, you can use pointers to manipulate elements
of the string. We recommended you to check C Arrays and Pointers before you check this example.

Example 4: Strings and Pointers
• #include <stdio.h>
•
• int main(void) {
• char name[] = "Harry Potter";
•
• printf("%c", *name); // Output: H
• printf("%c", *(name+1)); // Output: a
• printf("%c", *(name+7)); // Output: o
•
• char *namePtr;
•
• namePtr = name;
• printf("%c", *namePtr); // Output: H
• printf("%c", *(namePtr+1)); // Output: a
• printf("%c", *(namePtr+7)); // Output: o
• }

Commonly Used String Functions

• strlen() - calculates the length of a string
• strcpy() - copies a string to another
• strcmp() - compares two strings
• strcat() - concatenates two strings

Multiple Choice Questions: Strings in C
1) What is a String in C Language?

A) String is a new Data Type in C
B) String is an array of Characters with null character as the last element of array.
C) String is an array of Characters with null character as the first element of array
D) String is an array of Integers with 0 as the last element of array.
Answer: B

2) Choose a correct statement about C String.

char ary[]="Hello..!";
A) Character array, ary is a string.
B) ary has no Null character at the end
C) String size is not mentioned
D) String can not contain special characters. Answer: A
Explanation: It is a simple way of creating a C String. You can also define it like the below. \0 is

mandatory in this version. char ary[] = {'h','e','l','l','o','\0'};

3) What is the Format specifier used to print a String or Character array in C Printf or Scanf function.?

A) %c B) %C C) %s D) %w Answer: C
Explanation: char ary[]="Hello..!"; printf("%s",ary);

4) What is the output of C Program with Strings?

int main() {

https://www.programiz.com/c-programming/c-pointers-arrays
https://www.programiz.com/c-programming/library-function/string.h/strlen
https://www.programiz.com/c-programming/library-function/string.h/strlen
https://www.programiz.com/c-programming/library-function/string.h/strcpy
https://www.programiz.com/c-programming/library-function/string.h/strcpy
https://www.programiz.com/c-programming/library-function/string.h/strcmp
https://www.programiz.com/c-programming/library-function/string.h/strcmp
https://www.programiz.com/c-programming/library-function/string.h/strcat
https://www.programiz.com/c-programming/library-function/string.h/strcat

 char ary[]="Discovery Channel";
 printf("%s",ary);
 return 0;
}
A) D B) Discovery Channel C) Discovery D) Compiler error
Answer: B
Explanation: %s prints the while character array in one go.

5) What is the output of C Program with Strings?

int main() {
 char str[]={'g','l','o','b','e'};
 printf("%s",str);
 return 0;
}
A) g B) globe C) globe\0 D) None of the above
Answer: D
Explanation: Notice that you have not added the last character \0 in the char array. So it is not a
string. It can not know the end of string. So it may print string with some garbage values at the end.

6) What is the output of C Program with Strings?

int main() {
 char str[]={'g','l','o','b','y','\0'};
 printf("%s",str);
 return 0;
}
A) g B) globe C) globe\0 D) Compiler error
Answer: B
Explanation: Adding a NULL or \0 at the end is a correct way of representing a C string. You can simple

use char str[]="globy". It is same as above.

7) How do you convert this char array to string?

char str[]={'g','l','o','b','y'};
A) str[5] = 0; B) str[5] = '\0' C) str[]={'g','l','o','b','y','\0'}; D) All the

above
Answer: D

8) What is the output of C Program?

int main() {
 int str[]={'g','l','o','b','y'};
 printf("A%c ",str);
 printf("A%s ",str);
 printf("A%c ",str[0]);
 return 0;
}
A) A A A B) A Ag Ag
C) A*randomchar* Ag Ag D) Compiler error Answer: C
Explanation: Notice that STR is not a string as it is not a char array with null at the end. So STR is the

address of array which is converted to Char by %c. If you use %s, it prints the first number converted to char.

9) What is the output of C Program with arrays?

int main() {
 char str[]={"C","A","T","\0"};
 printf("%s",str);
 return 0;
}
A) C B) CAT C) CAT\0 D) Compiler error
Answer: D
Explanation: Yes. You can not use Double Quotes " to represent a single character. Correct way is 'C' not

"C". You should use Single Quotes around a single character constant.

10) What is the maximum length of a C String?

A) 32 characters B) 64 characters C) 256 characters D) None of the above
Answer: D
Explanation: Maximum size of a C String is dependent on implemented PC memory. C does not restrict C

array size or String Length.

11) What is the output of C program with strings?

int main() {
 char str1[]="JOHN";
 char str2[20];
 str2= str1;
 printf("%s",str2);
 return 0;
}
A) JOHN B) J C) JOHN\0 D) Compiler error
Answer: D
Explanation: You can not assign one string to the other. It is an error. "
error: assignment to expression with array type

12) What is the output of C Program with arrays?
int main() {
 char str[25];
 scanf("%s", str);
 printf("%s",str);
 return 0;
}//input: South Africa
A) South B) South Africa C) S D) Compiler error
Answer: A
Explanation: SCANF can not accept a string with spaces or tabs. So SCANF takes only South into STR.

13) What is the output of C program with strings?

int main() {
 char str[2];
 scanf("%s", str);
 printf("%s",str);
 return 0;
}//Input: South
A) So B) South C) Compiler error D) None of the above
Answer: B
Explanation: In C Arrays, Overflow or Out of Bounds is not checked properly. It is your
responsibility to check.

14) What is the output of C Program with strings?

int main() {
 char str[2];
 int i=0;
 scanf("%s", str);
 while(str[i] != '\0')
 {
 printf("%c", str[i]);
 i++;
 }
 return 0;
} //Input: KLMN
A) KL B) KLMN C) Compiler error D) None of the above
Answer: B
Explanation: It always overwrites the next memory locations of the array. It is your responsibility to

check bounds. scanf automatically adds a '\0' at the end of entered string.

15) What is the output of C Program with String Pointer?

int main() {
 char country[]="BRAZIL";
 char *ptr;

 ptr=country;
 while(*ptr != '\0')
 {
 printf("%c", *ptr);
 ptr++;
 }
 return 0;
}
A) B B) BRAZIL C) Compiler error D) None of the above
Answer: B
Explanation: *ptr != '\0' is the main part of traversing a C String.

16) How do you accept a Multi Word Input in C Language?

A) SCANF B) GETS C) GETC D) FINDS
Answer: B
Explanation: Yes. gets(str) fills the array str with the input given by the user.

17) Choose a correct C Statement about Strings.

A) PRINTF is capable of printing a multi word string.
B) PUTS is capable of printing a multi word string.
C) GETS is capable of accepting a multi word string from console or command prompt
D) All the above
Answer: D

18) What is the output of C Program with String Pointers?

int main() {
 char *p1 = "GOAT";
 char *p2;
 p2 = p1;
 printf("%s", p2);
}
A) G B) GOAT C) Compiler error D) None of the above
Answer: B
Explanation: Yes. You can assign one String pointer to another. But you can not assign a normal

character array variable to other like STR2 = STR1. It is an error.

19) What is the output of C Program with String arrays?

int main() {
 char *p1 = "GOAT";
 char *p2;
 p2 = p1;
 p2="ANT";
 printf("%s", p1);
}

A) ANT B) GOAT C) G D) A
Answer: B
Explanation: *p1 and *p2 are completely pointing different memory locations. So, p1 value is not

touched.

20) What is the output of C Program with String Arrays?

int main() {
 char p[] = "GODZILLA";
 int i=0;
 while(p[i] != '\0')
 {
 printf("%c",*(p+i));
 i++;
 } }
A) G B) GODZILLA C) Compiler error D) None of the above
Answer: B
Explanation: Notice the usage of *(p+i). Remember that, p[i] == *(p+i) == *(i+p) == i[p]

Programs:

Q1. Write a program to remove the characters which have odd index of a given string.
Q2. Write a program to count repeated characters in a string.

Sample string: 'thequickbrownfoxjumpsoverthelazydog'

Expected output :

o 4
e 3
u 2
h 2
r 2

 t 2

Q3. WAP to take a string from the keyword and remove extra spaces from it.
Q4. WAP to reverse a string without using string function.
Q5. WAP to take 10 students name from the keyboard and print all names in ascending order

SECTION -4 **

Pointers in C :
A pointer is a variable whose value is the address of another variable ie. direct address of the memory
location. Like any variable or constant, you must declare a pointer before you can use it to store any
variable address. The general form of a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of the
pointer variable. The asterisk * you used to declare a pointer is the same asterisk that you use for
multiplication. However, in this statement the asterisk is being used to designate a variable as a pointer.
Following are the valid pointer declaration:

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */
char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the
same, a long hexadecimal number that represents a memory address. The only difference between
pointers of different data types is the data type of the variable or constant that the pointer points to.

 How to use Pointers?

There are few important operations which we will do with the help of pointers very frequently.
(a) we define a pointer variables
(b) assign the address of a variable to a pointer and
(c) finally access the value at the address available in the pointer variable.
This is done by using unary operator * that returns the value of the variable located at the address
specified by its operand. Following example makes use of these operations:

#include <stdio.h>
void main ()
{
 int var = 20; /* actual variable declaration */
 int *ip; /* pointer variable declaration */

 ip = &var; /* store address of var in pointer variable*/

 printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */
 printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */
 printf("Value of *ip variable: %d\n", *ip);

}

When the above code is compiled and executed, it produces result something as follows:

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

NULL Pointers in C

It is always a good practice to assign a NULL value to a pointer variable in case you do not have exact
address to be assigned. This is done at the time of variable declaration. A pointer that is assigned NULL is
called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries. Consider the
following program:

#include <stdio.h>

int main ()
{
 int *ptr = NULL;

 printf("The value of ptr is : %x\n", ptr);

 return 0;
}

When the above code is compiled and executed, it produces following result:

The value of ptr is 0

Dangling Pointer in C

 Dangling pointers arise when an object is deleted or de-allocated, without modifying the value of
the pointer, so that the pointer still points to the memory location of the de-allocated memory. In
short pointer pointing to non-existing memory location is called dangling pointer

Pointer Arithmetic:

C pointer is an address which is a numeric value. Therefore, you can perform arithmetic operations on a pointer
just as you can a numeric value. There are four arithmetic operators that can be used on pointers: ++, --, +, and –

✓ Incrementing a Pointer

Incrementing a pointer, which increases its value by the number of bytes of its data type as shown below:

int x = 30; //Suppose Address of X is 200

int *p = &x; //Suppose Address of P is 100

p++; //Increment the address of P by 2 i.e. 202 because size of int is 2 bytes

✓ Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value by the number of bytes of its
data type as shown below:

int x = 30; //Suppose Address of X is 200

int *p = &x; //Suppose Address of P is 100

p--; //Decrement the address of P by 2 i.e. 198 because size of int is 2 bytes

✓ Pointer Comparisons

Pointers may be compared by using relational operators, such as ==, <, and >. If p1 and p2 point to variables that
are related to each other, such as elements of the same array, then p1 and p2 can be meaningfully compared.

✓ Following arithmetic operations are valid with pointers:-
 p1= p1+ 4;

 p1= p1-2;

 p3= p1-p2;

✓ Following other operations are valid with pointers:-

 p1>p2

 p1==p2

 p1 != p2

 p1++;

 --p2;

✓ Following operations are not valid with pointers:-

 p3=p1+p2;

 p3=p1/p2;

 p3=p1*p2;

 p1=p1/3;

Using Pointers as function argument : Call by reference

The call by reference method of passing arguments to a function copies the address of an argument into
the formal parameter. Inside the function, the address is used to access the actual argument used in the
call. This means that changes made to the parameter affect the passed argument.

To pass the value by reference, argument pointers are passed to the functions just like any other value.
So accordingly you need to declare the function parameters as pointer types as in the following function
swap(), which exchanges the values of the two integer variables pointed to by its arguments.

/* function definition to swap the values */

void swap(int *x, int *y)

{

 int temp = *x; /* save the value at address x */

 *x = *y; /* put y into x */

 y = temp; / put temp into y */

 }

#include <stdio.h>

void swap(int *x, int *y); // function prototype

void main ()

{

 /* local variable definition */

 int a = 100;

 int b = 200;

 printf("Before swap, value of a : %d\n", a);

 printf("Before swap, value of b : %d\n", b);

 swap(&a, &b); //calling swap by passing addresses of a and b

 printf("After swap, value of a : %d\n", a);

 printf("After swap, value of b : %d\n", b);

}

Let us put above code in a single C file, compile and execute it, it will produce following result:

Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :200
After swap, value of b :100

Difference between call by value & call by reference.

Cal by Value Call by Reference

This is the usual method to call a function in which only
the value of the variable is passed as an argument

In this method, the address of the variable is passed as an
argument

Any alternation in the value of the argument passed is
local to the function and is not accepted in the calling
program

Any alternation in the value of the argument passed is
accepted in the calling program(since alternation is made
indirectly in the memory location using the pointer)

Memory location occupied by formal and actual
arguments is different

Memory location occupied by formal and actual arguments is
same and there is a saving of memory location

Since a new location is created, this method is slow
Since the existing memory location is used through its
address, this method is fast

Pointers in Detail
Pointers have many but easy concepts and they are very important to C programming. The

following important pointer concepts should be clear to any C programmer −

Sr.No. Concept & Description

1

Pointer arithmetic

There are four arithmetic operators that can be used in pointers: ++, --, +, -

2
Array of pointers

You can define arrays to hold a number of pointers.

3
Pointer to pointer

C allows you to have pointer on a pointer and so on.

4

Passing pointers to functions in C

Passing an argument by reference or by address enable the passed argument to be changed

in the calling function by the called function.

5

Return pointer from functions in C

C allows a function to return a pointer to the local variable, static variable, and dynamically

allocated memory as well.

MCQ – Pointers in C

1. What will be the output of the following C code?

 int main()
 {
 char *p = NULL;
 char *q = 0;

https://www.tutorialspoint.com/cprogramming/c_pointer_arithmetic.htm
https://www.tutorialspoint.com/cprogramming/c_array_of_pointers.htm
https://www.tutorialspoint.com/cprogramming/c_pointer_to_pointer.htm
https://www.tutorialspoint.com/cprogramming/c_passing_pointers_to_functions.htm
https://www.tutorialspoint.com/cprogramming/c_return_pointer_from_functions.htm

 if (p)
 printf(" p ");
 else
 printf("nullp");
 if (q)
 printf("q\n");
 else
 printf(" nullq\n");
 }
a) nullp nullq
b) Depends on the compiler
c) x nullq where x can be p or nullp depending on the value of NULL
d) p q Ans: a

2. What will be the output of the following C code?

 int main()
 {
 int i = 10;
 void *p = &i;
 printf("%d\n", (int)*p);
 return 0;
 }
a) Compile time error
b) Segmentation fault/runtime crash
c) 10
d) Undefined behaviour Ans: a

3. What will be the output of the following C code?

 int main()
 {
 int i = 10;
 void *p = &i;
 printf("%f\n", *(float*)p);
 return 0;
 }
a) Compile time error
b) Undefined behaviour
c) 10
d) 0.000000 Ans: d

4. What will be the output of the following C code?

 int *f();
 int main()
 {
 int *p = f();
 printf("%d\n", *p);
 }
 int *f()
 {
 int *j = (int*)malloc(sizeof(int));
 *j = 10;
 return j;
 }
a) 10
b) Compile time error
c) Segmentation fault/runtime crash since pointer to local variable is returned

d) Undefined behaviour Answer: a

5. What will be the output of the following C code?

 int *f();
 int main()
 {
 int *p = f();
 printf("%d\n", *p);
 }
 int *f()
 {
 int j = 10;
 return &j;
 }
a) 10
b) Compile time error
c) Segmentation fault/runtime crash
d) Undefined behaviour Answer: a

Explanation: We are returning address of a local variable which should not be done. In this specific instance, we
are able to see the value of 10, which may not be the case if we call other functions before calling printf() in
main().

6. Comment on the following pointer declaration.
 int *ptr, p;

a) ptr is a pointer to integer, p is not
b) ptr and p, both are pointers to integer
c) ptr is a pointer to integer, p may or may not be
d) ptr and p both are not pointers to integer Answer: a

7. What will be the output of the following C code?

 int main()
 {
 int *ptr, a = 10;
 ptr = &a;
 *ptr += 1;
 printf("%d,%d/n", *ptr, a);
 }
a) 10,10
b) 10,11
c) 11,10
d) 11,11 Answer: d

8. Comment on the following C statement.
 const int *ptr;

a) You cannot change the value pointed by ptr
b) You cannot change the pointer ptr itself
c) You May or may not change the value pointed by ptr
d) You can change the pointer as well as the value pointed by it Answer: a

9. Which is an indirection operator among the following?
a) &
b) *

c) ->
d) . Answer: b

10. Which of the following does not initialize ptr to null (assuming variable declaration of a as int a=0;)?
a) int *ptr = &a;
b) int *ptr = &a – &a;
c) int *ptr = a – a;
d) All of the mentioned Answer: a

11. What will be the output of the following C code?
 int x = 0;
 void main()
 {
 int *ptr = &x;
 printf("%p\n", ptr);
 x++;
 printf("%p\n ", ptr);
 }
a) Same address
b) Different address
c) Compile time error
d) Varies Answer: a

12. What will be the output of the following C code?

 int x = 0;
 void main()
 {
 int *const ptr = &x;
 printf("%p\n", ptr);
 ptr++;
 printf("%p\n ", ptr);
 }
a) 0 1
b) Compile time error
c) 0xbfd605e8 0xbfd605ec
d) 0xbfd605e8 0xbfd605e8 Answer: b

13. What will be the output of the following C code?
 void main()
 {
 int x = 0;
 int *ptr = &x;
 printf("%p\n", ptr);
 ptr++;
 printf("%p\n ", ptr); }
a) 0xbfd605e8 0xbfd605ec
b) 0xbfd605e8 0cbfd60520
c) 0xbfd605e8 0xbfd605e9
d) Run time error Answer: a

14. What will be the output of the following C code?
 void main()
 {
 int x = 0;
 int *ptr = &5;
 printf("%p\n", ptr);

 }
a) 5
b) Address of 5
c) Nothing
d) Compile time error Answer: d

15. What will be the output of the following C code?

 void main()
 {
 int x = 0;
 int *ptr = &x;
 printf("%d\n", *ptr);
 }
a) Address of x
b) Junk value
c) 0
d) Run time error Answer: c

16. What will be the output of the following C code?

 void main()
 {
 int a[3] = {1, 2, 3};
 int *p = a;
 printf("%p\t%p", p, a);
 }
a) Same address is printed
b) Different address is printed
c) Compile time error
d) Nothing Answer: a

17. What will be the output of the following C code?

 void main()
 {
 char *s = "hello";
 char *p = s;
 printf("%p\t%p", p, s);
 }
a) Different address is printed
b) Same address is printed
c) Run time error
d) Nothing Answer: b

18. What will be the output of the following C code?

 void main()
 {
 char *s= "hello";
 char *p = s;
 printf("%c\t%c", p[0], s[1]);
 }
a) Run time error
b) h h
c) h e
d) h l Answer: c

19. What will be the output of the following C code?

 void main()
 {
 char *s= "hello";
 char *p = s;
 printf("%c\t%c", *(p + 3), s[1]);
 }
a) h e
b) l l
c) l o
d) l e Answer: d

20. What will be the output of the following C code?

 #include <stdio.h>
 void main()
 {
 char *s= "hello";
 char *p = s;
 printf("%c\t%c", 1[p], s[1]);
 }
a) h h
b) Run time error
c) l l
d) e e Answer: d

21. What will be the output of the following C code?

 void foo(int[]);
 int main()
 {
 int ary[4] = {1, 2, 3, 4};
 foo(ary);
 printf("%d ", ary[0]);
 }
 void foo(int p[4])
 {
 int i = 10;
 p = &i;
 printf("%d ", p[0]);
 }
a) 10 10
b) Compile time error
c) 10 1
d) Undefined behaviour Answer: c

22. What will be the output of the following C code?

 int main()
 {
 int ary[4] = {1, 2, 3, 4};
 int *p = ary + 3;
 printf("%d\n", p[-2]);
 }
a) 1
b) 2
c) Compile time error
d) Some garbage value Answer: b

23. int main()
 {
 int ary[4] = {1, 2, 3, 4};
 int *p = ary + 3;
 printf("%d %d\n", p[-2], ary[*p]);
 }
a) 2 3
b) Compile time error
c) 2 4
d) 2 somegarbagevalue Answer: d

24. What will be the output of the following C code?

 int main()
 {
 int ary[4] = {1, 2, 3, 4};
 printf("%d\n", *ary);
 }
a) 1
b) Compile time error
c) Some garbage value
d) Undefined variable Answer: a

25. What will be the output of the following C code?

 int main()
 {
 const int ary[4] = {1, 2, 3, 4};
 int *p;
 p = ary + 3;
 *p = 5;
 printf("%d\n", ary[3]);
 }
a) 4
b) 5
c) Compile time error
d) 3 Answer: b

Programs:

Q1.WAP to swap value of two int variable through pointer.

Q2. WAP to Accept two int value without using ‘&’ sign in scanf() and display sum of variable.

Q3. WAP to Search any value in Array without using index number.

Q4. Write a program to count repeated characters in a string using pointer.

Sample string: 'thequickbrownfoxjumpsoverthelazydog'

Expected output :

o 4
e 3
u 2
h 2

r 2
 t 2
Q5. WAP to take a string from the keyboard and remove all vowel characters using pointer.

SECTION - 5

Functions in C

In c, we can divide a large program into the basic building blocks known as function. The

function contains the set of programming statements enclosed by {}. A function can be called

multiple times to provide reusability and modularity to the C program. In other words, we can

say that the collection of functions creates a program. The function is also known as procedure

or subroutine in other programming languages.

Advantage of functions in C

There are the following advantages of C functions.

• By using functions, we can avoid rewriting same logic/code again and again in a

program.

• We can call C functions any number of times in a program and from any place in a

program.

• We can track a large C program easily when it is divided into multiple functions.

• Reusability is the main achievement of C functions.

• However, Function calling is always a overhead in a C program.

• Function declaration A function must be declared globally in a c program to tell the

compiler about the function name, function parameters, and return type.

• Function call Function can be called from anywhere in the program. The parameter list

must not differ in function calling and function declaration. We must pass the same

number of functions as it is declared in the function declaration.

• Function definition It contains the actual statements which are to be executed. It is

the most important aspect to which the control comes when the function is called. Here,

we must notice that only one value can be returned from the function.

SN C function aspects Syntax

1 Function declaration return_type function_name (argument list);

2 Function call function_name (argument_list)

3 Function definition return_type function_name (argument list) {function

body;}

The syntax of creating function in c language is given below:

• return_type function_name(data_type parameter...){

• //code to be executed

• }

Types of Functions
There are two types of functions in C programming:

• Library Functions: are the functions which are declared in the C header files such as

scanf(), printf(), gets(), puts(), ceil(), floor() etc.

• User-defined functions: are the functions which are created by the C programmer, so

that he/she can use it many times. It reduces the complexity of a big program and

optimizes the code.

Return Value

A C function may or may not return a value from the function. If you don't have to return any

value from the function, use void for the return type.

Let's see a simple example of C function that doesn't return any value from the function.

Example without return value:

• void hello(){

• printf("hello c");

• }

If you want to return any value from the function, you need to use any data type such as int,

long, char, etc. The return type depends on the value to be returned from the function.

Let's see a simple example of C function that returns int value from the function.

Example with return value:

• int get(){

• return 10;

• }

In the above example, we have to return 10 as a value, so the return type is int. If you want

to return floating-point value (e.g., 10.2, 3.1, 54.5, etc), you need to use float as the return

type of the method.

• float get(){

• return 10.2;

• }

Now, you need to call the function, to get the value of the function.

Different aspects of function calling

A function may or may not accept any argument. It may or may not return any value. Based

on these facts, There are four different aspects of function calls.

g. function without arguments and without return value

h. function without arguments and with return value

i. function with arguments and without return value

j. function with arguments and with return value

Example for Function without argument and return value

Example 1

#include<stdio.h>

void printName();

void main ()

{

 printf("Hello ");

 printName();

}

void printName()

{

 printf("Javatpoint");

}

Output
Hello Javatpoint

MCQ: Functions in C

1) Choose correct statement about Functions in C Language.

A) A Function is a group of c statements which can be reused any number of times.
B) Every Function has a return type.
C) Every Function may no may not return a value.
D) All the above. Answer: D

2) Choose a correct statement about C Language Functions.

A) A function name can not be same as a predefined C Keyword.
B) A function name can start with an Underscore(_) or A to Z or a to z.
C) Default return type of any function is an Integer.
D) All the above. Answer: D

3) Choose a correct statement about C Function.?

main() {
 printf("Hello");
}
A) "main" is the name of default must and should Function.
B) main() is same as int main()
C) By default, return 0 is added as the last statement of a function without specific return type.
D) All the above Answer: D

4) A function which calls itself is called a ___ function.

A) Self Function B) Auto Function C) Recursive Function D) Static Function
Answer: C

5) What is the output of C Program with Functions.?
int main()
{
 void show()
 {
 printf("HIDE");
 }

 show();

 return 0;
}
A) No output B) HIDE C) Compiler error D) None of the above
Answer: B
Explanation: Notice that show() function is defined inside main() function. It will not produce a

compile error. But, it is not recommended to define a FUNCTION INSIDE A FUNCTION. DO NOT DO.

6) What is the output of C Program with functions.?
void show();

int main()
{
 show();
 printf("ARGENTINA ");
 return 0;
}

void show()
{
 printf("AFRICA ");
}

A) ARGENTINA AFRICA B) AFRICA ARGENTINA
C) ARGENTINA D) Compiler error
Answer: B
Explanation: First show() function is called. So it prints AFRICA first.

7) What is the output of C Program with functions.?

int main()
{
 show();
 printf("BANK ");
 return 0;
}
void show()
{
 printf("CURRENCY ");
}
A) CURRENCY BANK B) BANK CURRENCY
C) BANK D) Compiler error
Answer: D
Explanation: Yes. Compiler error. Before calling the show(); function, its Function Prototype should

be declared before outside of main() and before main().
void show();
int main()
{
 show();
 printf("BANK ");
 return 0;
}

8) How many values can a C Function return at a time.?

A) Only One Value B) Maximum of two values
C) Maximum of three values D) Maximum of 8 values
Answer: A
Explanation: Using a return val; statement, you can return only one value.

9) What is the output of a C program with functions.?

void show();

void main()
{
 show();
 printf("RAINBOW ");

 return;
}

void show()
{
 printf("COLOURS ");
}
A) RAI NBOW COLOURS B) COLOURS RAINBOW
C) COLOURS D) Compiler error
Answer: B
Explanation: VOID functions should not return anything. RETURN; is returning nothing.
1. First void main() return; nothing. Still it is valid.
2. Second void show() function is NO RETURN statement. It is also valid.

10) What is the output of C Program.?

void show();

void main()
{
 printf("PISTA ");
 show();
}

void show()
{
 printf("CACHEW ");
 return 10;
}
A) PISTA CACHEW B) CASHEW PISTA
C) PISTA CASHEW with compiler warning D) Compiler error
Answer: C
Explanation: void show() function should not return anything. So return 10; is not recommended.

11) What is the output of C Program with functions.?

int show();
void main()
{
 int a;
 printf("PISTA COUNT=");
 a=show();
 printf("%d", a);
}

int show()
{
 return 10;
}
A) PISTA COUNT= B) PISTA COUNT=0
C) PISTA COUNT=10 D) Compiler error
Answer: C
Explanation: int show() function returns TEN (10). 10 is assigned to a at a=show().

12) What is the output of C Program with functions.?

void main()
{
 int a;
 printf("TIGER COUNT=");
 a=show();
 printf("%d", a);
}

int show()
{
 return 15;
 return 35;
}
A) TIGER COUNT=15 B) TIGER COUNT=35
C) TIGER COUNT=0 D) Compiler error
Answer: A
Explanation: More than one return statement will not cause Compiler Error. But only FIRST return

STATEMENT is executed. Anything after return 15; is not reachable.

13) What are types of Functions in C Language.?

A) Library Functions B) User Defined Functions
C) Both Library and User Defined D) None of the above
Answer: C

14) What is the output of C program with functions.?

int show();

void main()
{
 int a;
 a=show();
 printf("%d", a);
}

int show()
{
 return 15.5;
 return 35;
}
A) 15.5 B) 15 C) 0 D) Compiler error
Answer: B
Explanation: It is perfectly Okay to return a float number 15.5 as an Integer inside int show()

function. 15.5 is demoted to integer as 15 and returned.

15) What is the output of C Program.?

int myshow(int);

void main()
{
 myshow(5);
 myshow(10);
}

int myshow(int b)
{
 printf("Received %d, ", b);
}
A) Received 5, Received 10, B) Received 10, Received 5,
C) Received 0, Received 0, D) Compiler error
Answer: A
Explanation: Notice the function prototype declaration int myshow(int). If you declare wrong either

Compiler warning or error is thrown. myshow(5) passes number 5. 5 is received as variable int b.

16) What is the output of C Program with functions and pointers.?

int myshow(int);

void main()
{
 int a=10;
 myshow(a);
 myshow(&a);
}

int myshow(int b)
{
 printf("Received %d, ", b);
}

A) Received 10, Received 10,
B) Received 10, Received RANDOMNumber,
C) Received 10, Received RANDOMNumber, with a compiler warning
D) Compiler error
Answer: C
Explanation: a is 10. &a is the address of the variable a which is a random memory location. To

receive an address, int myshow(int b) should be rewritten as int myshow(int *k).

17) What is the output of C Program with functions and pointers.?

int myshow(int *);

void main()
{
 int a=10;
 myshow(&a);
}

int myshow(int *k)
{
 printf("Received %d, ", *k);
}
A) Received RANDOMNumber, B) Received 10,
C) Received 10, D) Compiler error
Answer: C
Explanation: It is called Passing a variable by reference. You are passing &a instead of a. Address of

a or &a is received as int *k. Observe the function prototype declaration before main(),
int myshow(int *).

18) What is the output of C Program with functions and pointers.?

void myshow(int *);
 void main()

{
 int a=10;
 printf("%d ", a);
 myshow(&a);
 printf("%d", a);

}

void myshow(int *k)
{
 *k=20;
}
A) 10 10 B) 20 20 C) 10 20 D) Compiler error
Answer: C
Explanation: You passed &a instead of a into myshow(int) function. *k=20 changes the valued of

passed variable passed by reference.

19) What is the output of C Program with functions.?

void myshow(int);

void main()
{
 int a=10;
 printf("%d ", a);
 myshow(a);
 printf("%d", a);

}

void myshow(int k)
{
 k=20;
}
A) 10 10 B) 20 20 C) 10 20 D) Compiler error
Answer: A
Explanation: You passed variable a directly by value. myshow(a). k=20 will not actually change the

variable a as variable k and variable a are completely different. It is called Pass By Value.

20) Choose correct statements about C Language Pass By Value.

A) Pass By Value copies the variable value in one more memory location.
B) Pass By Value does not use Pointers.
C) Pass By Value protects your source or original variables from changes in outside functions or
called functions.
D) All the above Answer: D

Programs:

Q1. Input user name and password from the keyboard and write a function to encrypt this password.

Q2. Write a recursive function to print first 10 Fibonacci numbers.

Q3. Write a recursive function to check the given number is prime or not.

Q4. Write a function to print factorial of a given number.

Q5.Write a function to check the given string is palindrome or not?

SECTION - 6

Structures in C

C arrays allow you to define type of variables that can hold several data items of the same kind but
structure is another user defined data type available in C programming, which allows you to combine data
items of different kinds.

Structures are used to represent a record, Suppose you want to keep track of your books in a library. You might
want to track the following attributes about each book:

• Title
• Author
• Subject

• Book ID

❖ Defining a Structure
To define a structure, you must use the struct keyword. The struct statement defines a new data type, with
more than one member for your program. The format of the struct statement is this:

struct [structure tag]
{
 member definition;
 member definition;
 ...
 member definition;
} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition, such as int i; or
float f; or any other valid variable definition. At the end of the structure's definition, before the final
semicolon, you can specify one or more structure variables but it is optional. Here is the way you would
declare the Book structure:

struct Books
{
 char title[50];
 char author[50];
 char subject[100];
 int book_id;
} book;

7. Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The member access operator
is coded as a period between the structure variable name and the structure member that we wish to access.
You would use struct keyword to define variables of structure type. Following is the example to explain usage
of structure:

#include <stdio.h>
#include <string.h>

struct Books
{
 char title[50];
 char author[50];
 char subject[100];
 int book_id;
};

void main()
{

 /* Declare Book1 of type Book */
 struct Books Book1 = {"C Programming","Herbert","C Tutorial",6495407};

 /* Declare Book2 of type Book */
 struct Books Book2 = {"Telecom","Bertz","Tele Billing",6495700};

 /* print Book1 info */
 printf("Book 1 title : %s\n", Book1.title);
 printf("Book 1 author : %s\n", Book1.author);
 printf("Book 1 subject : %s\n", Book1.subject);
 printf("Book 1 book_id : %d\n", Book1.book_id);

 /* print Book2 info */
 printf("Book 2 title : %s\n", Book2.title);
 printf("Book 2 author : %s\n", Book2.author);

 printf("Book 2 subject : %s\n", Book2.subject);
 printf("Book 2 book_id : %d\n", Book2.book_id);

}

When the above code is compiled and executed, it produces following result:

Book 1 title : C Programming
Book 1 author : Herbert
Book 1 subject : C Tutorial
Book 1 book_id : 6495407
Book 2 title : Telecom
Book 2 author : Bertz
Book 2 subject : Tele Billing
Book 2 book_id : 6495700

Program:

Q1. Create a database of 10 student in C having the following attributes: Roll_no, Stud_name, Age, City And print

details of those students who live in Allahabad.

SECTION - 7

File Handling

• A file is a collection of bytes stored on a secondary storage device, which is generally a disk of some kind.
• A file can be a text file or a binary file depending upon its contents.
• Through file handling, one can perform operations like create, modify, delete etc on system files.
• File I/O can be performed on a character by character basis, a line by line basis, a record by record basis

or a chunk by chunk basis.
• Special functions have been designed for handling file operations. The header file stdio.h is required for

using these functions.

Opening a File

Before we perform any operations on a file, we need to identify the file to the system and open it. We do this by
using a file pointer. The type FILE defined in stdio.h allows us to define a file pointer. Then you use the function
fopen() for opening a file. Once this is done one can read or write to the file using the fread() or fwrite() functions,
respectively. The fclose() function is used to explicitly close any opened file.

fopen()

Before we can read (or write) information from (to) a file on a disk we must open the file. To open the file we
have called the function fopen().

fopen() returns the address of the file, which we have collected in the file pointer called fp. We have declared fp
as

FILE *fp ;
Syntax of fopen();->

fP = fopen(“ file name ” , “Opening Mode”);
This function accepts two arguments as strings. The first argument denotes the name of the file to be opened and
the second signifies the mode in which the file is to be opened. The second argument can be any of the following:

The mode can be :

• ‘r’ : Open text file for reading. The stream is positioned at the beginning of the file.
• ‘r+’ : Open for reading and writing. The stream is positioned at the beginning of the file.

• ‘w’ : Truncate file to zero length or create text file for writing. The stream is positioned at the beginning
of the file.

• ‘w+’ : Open for reading and writing. The file is created if it does not exist, otherwise it is truncated. The
stream is positioned at the beginning of the file.

• ‘a’ : Open for appending (writing at end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

• ‘a+’ : Open for reading and appending (writing at end of file). The file is created if it does not exist. The
initial file position for reading is at the beginning of the file, but output is always appended to the end of
the file.

fclose()

• The fclose() function is used for closing opened files. The only argument it
accepts is the file pointer.

• If a program terminates, it automatically closes all opened files.

Syntax :-> fclose(FILE *)

Ex:- fclose(fp);

fputc() :-> Writes a single character to a file.
Syntax:- fputc(char , FILE *);
Ex:-> char ch=’a’;
fputc(ch,fp);

fgetc() :- > Reads a single character from a file.
Syntax:- char fgetc(FILE *);
Ex:- > char ch=fgetc(fp);

fputs() :-> Writes a string in to file.

Syntax:-> fputs(const char *,FILE *)
Ex:- fputs(“bhanu pratap “,fp);

 fgets () :à Reads a string from a file.

Syntax:->char * fgets(char *, int, FILE *)
Ex:-> char ch[50];
ch=fgets(fp);

fread() :-> Read data from a file
fwrite():-> Writes data to a file

ftell() :

 Function ftell() returns the current position of the file pointer in a stream. The return value is 0 or a positive
integer indicating the byte offset from the beginning of an open file. A return value of -1 indicates an error.

long int ftell(FILE *fp);

fseek()

This function positions the next I/O operation on an open stream to a new position relative to the current
position.

 int fseek(FILE *fp, long int offset, int origin);

Here fp is the file pointer of the stream on which I/O operations are carried on, offset is the number of bytes to
skip over. The offset can be either positive or negative, denting forward or backward movement in the file. origin
is the position in the stream to which the offset is applied, this can be one of the following constants :

 SEEK_SET : offset is relative to beginning of the file
 SEEK_CUR : offset is relative to the current position in the file
 SEEK_END : offset is relative to end of the file

EOF: It is a constant indicating that End Of File has been reached in a file.

Program:

Q1: WAP to Copy content of one file ”test.txt” to another file “aa.txt”

Q2. WAP to count number of lines, number of spaces and number of characters of a file.

Q3. WAP to encrypt the content of a file and store it into another file.

